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(a) Coordinate transformation techniques. Here the un-
known is mapped onto a regular geometrical region. TheA 2D axisymmetric formulation for the solution of a directional

solidification problem using an inverse finite-element method resulting transformed equations are then solved on this
(IFEM) is presented. An algorithm developed by A. N. Alexandrou domain using N 2 1 of the N boundary conditions. The
(Int. J. Numer. Methods Eng. 28, 2383, 1989) has been modified Nth condition, sometimes referred to as the distinguished
and extended to include more general boundary conditions. The

condition [1] is used to determine the location of the freelatter includes the explicit presence of an ampoule (with a complex
or moving boundary in physical space in an iterative fash-shape) that contains the solid and the melt from which it is growing.

Heat transfer between the ampoule and the external environment, ion. This approach has been realized, using different solu-
time-dependent thermal boundary conditions, nonmonotonic tem- tion techniques, including finite element [2–5] and, re-
perature distributions, and species diffusion in the melt and crystal cently, Chebyshev spectral techniques [6]. The techniques
are also taken into account. Thus, our extended formulation encom-

employed to handle the mapping include Landau-typepasses a wider class of solidification problems than previous IFEM
transformations [6, 7] and numerically generated movingmethods. Numerical experiments that illustrate the suitability of the

extended IFEM are presented. In particular, we present a simulation orthogonal curvilinear systems obtained by elliptic mesh
of the directional solidification of zinc cadmium telluride using generation methods (see, for example, [8]).
boundary conditions corresponding to an actual experiment
scenario. Q 1997 Academic Press (b) Enthalpy methods. Enthalpy methods, first sug-

gested by Rose [9], are ‘‘fixed domain’’ based approaches
to phase change problems which do not require explicit

1. INTRODUCTION tracking of the phase boundary. The method involves cast-
ing the energy transport equation in conservation formPhase change free boundary problems related to solidi-
[10] and defining an enthalpy function for the entire two-fication or melting represent a class of problems that re-
phase domain. As solidification proceeds, the location ofquire simultaneous solution of the governing partial differ-
the boundary between the solid and liquid phases is thenential equations and the geometry of the domain on which
determined from the enthalpy distribution and the fractionthey are defined. Solution techniques for such problems
of solid or liquid occupying each cell. These techniquesinclude coordinate transformation techniques, enthalpy
have been applied successfully to solidification problemsmethods, inverse formulation methods, phase field models
for pure substances and binary compounds (see, for exam-and, more recently, the inverse finite-element method
ple, [10–14]).(IFEM). All these methods, have, in one form or another,

been applied to the problem of the directional solidification (c) Phase field models. The phase-field approach in-
of pure substances and binary compounds (see [1]). Direc- volves the assumption that a phase-field f(x, t) exists which
tional solidification is a commonly used technique for the specifies the phase of the system at each point x. It is then
production of semiconductor crystals and some metal assumed that the total Helmholtz free energy of the system,
alloys. Essentially, the solid, usually a crystal, is grown F, is a functional dependent on f, temperature, composi-
by translating a melt relative to an imposed temperature tion, etc. The dependence of F on f is assumed to be of
gradient such that it gradually freezes in the direction anti- a ‘‘double well’’ form [15] and is usually taken in the form
parallel to the translation direction (see Fig. 1). of an explicit dependence on local gradients of f. The

The existing solution techniques for such problems can different models that are based on the phase field ideas
be subdivided into the following classes: are reviewed by Hohenberg and Halperin [16] and, for

solidification in particular, have been developed by Langer
[17] and Caginalp [18]. Various studies performed using1 On leave from the Institute for Problems in Mechanics, Russian Acad-

emy of Sciences, 101 Vernadsky Av, Moscow, Russia, 117526. this approach have shown that it can successfully reproduce
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restricted to linear problems. In this approach, the temper-
atures are fixed at the mesh nodes. The mesh nodes are
then moved such that the energy transport equations are
satisfied at the new node locations. Thus, it differs from
the previous inverse approach [22] in that the inverse trans-
formation is not required. Thus, while the problem is in-
versely defined, it is not mathematically inverted.

The application of the previously developed IFEM
method [25] to solidification problems is, in general, limited
if the temperature field is complicated or the initial approx-
imations are singular. In [25], the internal temperature field
was required to be spatially monotonic in order to ensure
the existence of solutions. However, as explained later,
this restriction can be avoided if the Newton method used
to update the mesh node locations is modified. We have
extended the method to include time-dependent thermal
boundary conditions. In practical applications, another lim-
itation of previous IFEM approaches is that heat flow
within the sidewalls is not considered. In fact, the container
surrounding the melt and crystal was not considered at all.
The requirement that the temperature field be spatially
monotonic excluded the possibility of changing the bound-
ary temperature (i.e., the melt-container temperature).
Thus, the application to technologically interesting situa-
tions for which the finite extent of the ampoule or container
must be treated explicitly was not possible. However, in
problems for which the use of the ‘‘quasi-steady approxi-
mation [26] is admissible, the monotonic temperature re-FIG. 1. Physical model of the directional solidification technique.
striction need not be a problem. This is because, in the
frame of reference used in this approximation, the ampoule
wall temperatures do not change. Thus, provided one con-

complex solid–liquid interface shapes associated with so- siders the solidification of a pure substance this causes no
lidification of a pure material [19–21]. problems since, at least when interface kinetics are not

important (i.e., the dependence of the interfacial tempera-(d) Inverse methods. For the approaches described in
(a) and (b), the temperature field and the melt–liquid inter- ture on the degree of undercooling) the melt–crystal inter-

face will always be defined by a constant melting tempera-face are taken to be unknown functions that depend on
position, x, and time, t. In contrast, for the inverse formula- ture. However, for situations in which interface kinetics

are important, or where explicit dependence of meltingtion, the positions, x, are taken to be the unknowns [22].
The earliest inverse approaches achieved this by defining temperature on curvature (Gibbs–Thomson effect) is con-

sidered, the IFEM method requires modification. Fora set of orthogonal coordinates that are based on the or-
thogonality of isotherms and heat flow lines. The governing multicomponent systems where the melting temperature

is composition dependent, the interface temperature willequations were then transformed accordingly so that tem-
perature became the independent variable. The isotherm generally be nonuniform, regardless of whether kinetics

or curvature-related effects are important. In such cases,migration method was one of the earliest inverse methods
to be successfully applied to solidification problems. It has the constraint that nodal temperature values remain fixed

during the calculation must be relaxed if the IFEM methodrecently been employed to study the effect of nonlinear
radiation boundary conditions on temperature field kinet- is to be applied.

In this paper we introduce an extension of the IFEM,ics [23, 24]. This particular inverse method is restricted to
1D or linear problems only since it is difficult to find the described in [25], that allows the nodal temperatures to

change and employs a more general mesh updating pro-appropriate coordinate transformation for 2 and 3D non-
linear problems. An alternative inverse finite-element cedure than in previous applications. This extends the prac-

tical applications of IFEM to time-dependent boundarymethod (IFEM) for directly formulated free boundary
problems has recently been proposed [25] which is not conditions, spatially nonmonotonic temperature fields and
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the solidification of a binary alloy with a composition de-
pendent melting temperature.

2. SOLIDIFICATION FROM A PURE MELT:
FORMULATION

The problem of directional solidification involves either
the translation of an ampoule through a furnace tempera-
ture profile (Bridgman technique [2, 5]; see Fig. 1) or modi-
fication of the furnace temperature profile with time (e.g.,
gradient freeze [27]). In both cases a fixed point on the
ampoule wall will experience a change in a temperature
with time that results in the directional solidification of
the melt initially contained within the ampoule. The instan-
taneous position of the solidification front is determined
by the temperature distribution inside the ampoule and
the location of the melting temperature. For a pure sub-
stance, this is taken to be a constant and corresponds to
an isotherm.

In the following formulation a general cylindrical coordi-
nate system is employed, and vector x 5 (z, r) is referenced
to points located inside the domain V 5 V c< Vm or on
the boundaries Si (see Fig. 2).

In the absence of natural or forced convection in the melt
and radiation, the governing equation for the temperature
field is

cp r
­T
­t

5 =(l = T) 1 Q (1)

FIG. 2. Ampoule geometry, computational domain, and coordinate
for x [ V, with applied boundary conditions system.

T 5 Tk(x, t) for x [ Sk, k 5 1, 3, ..., (2)

tensor. In contrast to earlier inverse approaches, orthogo-
and

nality of heat flux lines and isotherms is not a requirement
of IFEM and the extensions developed here. Thus, it can
be applied to problems for which the conductivity is repre-2l

­T
­n

5 a [T 2 Tex(z, t)] for x [ S2 , (3)
sented by a second rank tensor.

The solidification front has no prescribed velocity. Its
where T is the temperature, Q is a heat source, r is the position and velocity must be determined from a global
mass density which we take to the same for the solid and energy balance. Since a local energy balance must also be
liquid,2 cp 5 cp(x) is the specific heat, and S1 < S2 ? ? ? < maintained, the conditions at the interface are
Sk 5 S is the boundary of the region V, which includes
ampoule, crystal, and melt. Tk is the temperature applied rL V ? n 5 lc = Tc ? n 2 lm = T ? n for x [ Vm > Vc , (4)
to the Sk boundary, a is a heat transfer coefficient, and

T(x, t) 5 Tm 5 Tc 5 Tm0 , x [ Vm > Vc , (5)Tex 5 Tex(z, t) is an external temperature profile which
provides heat to the ampoule walls. l 5 l(x) represents
the thermal conductivity of the materials. In general, l is where L is the latent heat of solidification, V is the velocity

of the melt–liquid interface, n is the outward pointing unitdifferent in the melt, solid, and ampoule and, for aniso-
tropic crystals [28] may be represented by a second rank normal to the crystal along the solidification front, lc and

lm are the thermal conductivities of crystal and melt,
=Tc , =Tm , are the temperature gradients in the crystal and2 In practice this assumption is not always valid. However, depending
melt at the interface, Tm0 is the melting temperature. Hereon the particular situation, the technique presented here can be adapted

for situations when the densities are different. it is assumed that the internal energy density is given by
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quadratic) basis functions. An implicit summation is made
over repeated indices i in (6) and hereafter.

A Galerkin formulation is used to find the unknown
node positions. As the position of the nodes change with
time, the governing equation (1) is recast in the form

cpr S­T
­t

2 V ? =TD5 =(l = T ) 1 Q, (7)

FIG. 3. Schematic showing the vertex averaging procedure operating where V is a nodal velocity. The corresponding Galerkin
on an irregular arrangement of triangular elements. equations for (7) are then

e 5 cp T, where the specific heat, cp , is taken to be constant E
G
Scpr S­u

­t
2 V ? = uD2 =(l = u) 2 QDFi dG 5 0,

(8)over the range of temperatures considered.
i 5 1, 2, ..., N.

3. IFEM SOLUTION METHOD
A more detailed description of equation (8) is given in

The solution of (1)–(5) starts from an initial estimate of the Appendix.
the temperature field for a given set of points hxij, which Finite differences are used for time discretization.
are represented by the mesh nodes. The hxij are determined That is,
by inverting (1)–(5) for a given applied temperature. This
means that one fixes the temperature values at the nodes ­u

­t
5 [u(t 1 t) 2 u(t)]/t, (9)and finds the nodal positions. Equations (1)–(5) are im-

plicit for hxij and nonlinear even in the simplest one-dimen-
sional case; hence a Newton iterative solution technique

where t is the time step. An implicit solution scheme isis required. Details are provided below. The new hxij calcu-
used in time to avoid stability condition restrictions on thelated at each time step redefine the spatial location of the
time step value t. Each nodal velocity is computed fromisotherms such that the governing equations and all the

boundary and interface conditions are satisfied. Thus, an
V 5 [x(t 1 t) 2 x(t)]/t. (10)implicitly inverse problem is defined. This method can be

implemented using a finite-element method for rather gen-
eral crystal–melt interface problems in complicated geom- Boundary conditions of the first kind are taken for the
etries. applied temperature (2) on the boundary Sk . This is imple-

The advantage of such an inverse approach is that the mented by fixing the node position in the algebraic system
crystal–melt interface need not be tracked. It is located at of equations. This means that the boundary location of
the element boundaries and, thus, allows us to use a finite- mesh nodes with imposed temperatures remains un-
element method (FEM) without any difficulty. The differ- changed. The crystal–melt interface, Sm , is characterized
ence between the standard FEM method, and the inverse by a constant melting temperature, Tm0 , and its location
finite-element method (IFEM) is that the nodal values of can be changed at each time step.
the temperature field are taken to be fixed while the spatial The adjustment of the crystal–melt interface location
position of these nodes is unknown. After an initial guess from time t to t 1 t involves the following steps:
is made, the location of the nodes must be determined such

Step 1. Set the initial approximation for new nodal posi-that the temperature field satisfies the governing equations,
tions, including the interface nodes.boundary and interface conditions.

The approximation of the temperature field, u, is taken Step 2. Estimate the residual norm R of Eqs. (8).
in the form Step 3. Change the position of the mesh nodes to de-

crease the nodal residuals Ri or stop iterations, if norm R
is small enough.u 5 ON

i51
ui Fi(x) ; ui Fi(x), (6)

Step 4. Return to step 2.

For quadratic convergence a Newton iterative techniquewhere ui 5 ui(t) are the values of temperature in the N
mesh nodes, and the Fi(x), i 5 1, ..., N, are (linear or is used in step 3,
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ture values at the mesh nodes and employing a two-step
xn11

i 5 xn
i 2S­Ri

­xj
D21

Rj(xn), (11) node position updating strategy. Such averaging proce-
dures are sometimes used in conjunction with elliptic mesh
generation techniques [29, 30] through the introduction ofwhere (­Ri/­xj)21 is the inverse of the Jacobian of the
coordinate dependent weight functions. In these problemsresiduals Rj with respect to the location of the node xj .
it prevents abrupt changes in mesh size and enables theThe right-hand side of (11) uses values computed at the
generation of smoothly refined meshes.previous iteration. If the initial approximation is good

For cases when internal heat sources cause local temper-enough, the convergence is rather fast.
ature extrema, the method will fail whenever the JacobianNote that the number of equations in (8) is N, but to
in (11) is vanishingly small but the residual is finite.solve for the node positions requires that 2N values be

given. This can be handled in different ways. For example,
4. COMPARISON WITH ANALYTICAL SOLUTIONin [25] it is proposed to add N constraints to ensure orthog-

onality of the mesh. For conditions at fixed surfaces, like
To test the method, we solved a one-dimensional tran-ampoule walls, this would require the use of elliptic mesh

sient problem and compared the computed solution to angeneration (EMG) to ensure orthogonality. In this paper
analytical one. The problem involves the penetration of aan alternative approach is considered. It is less formal,
freezing front from a cold wall (temperature Tw) into anrobust and avoids the complexity that would arise with the
infinite melt. The melt is initially at the freezing tempera-use of EMG.
ture. This test problem has been proposed previously [25].For the case of long cylindrical ampoules we need to
It is presented here for comparative purposes. For conve-change only the z-coordinate values of the mesh nodes.
nience we use a characteristic length L, Tm 2 Tw , andThis means that the Jacobian in (11) involves only the ‘‘z’’-
L2rcp/l to nondimensionalize length, temperature andderivative. The mesh node r-coorindate values are only
time, and define u 5 (T 2 Tm)/(Tm 2 Tw). This yields themoved (through a vertex averaging procedure described
following form of (7)below) to satisfy the geometric constraints (that is, bound-

ary nodes must remain on boundaries) and to maintain a
smooth mesh distribution. ­u

­t
5

­2u

­x2 , (12)
It should be noted that there are limitations to this tech-

nique. For example, internal temperature extrema will re-
with boundary conditions u (0, t) 5 21, for t . 0, the initialsult in divergence of the inverse Jacobian in (11). Such
value u (x, 0) 5 0, for x . 0; um 5 0 and at the interfaceextrema can be caused by internal heat sources or sinks

or by time-dependent thermal boundary conditions. To
treat problems with time-dependent boundary conditions

2
­u

­x
5 J

­x
­t

. (13)we use the following approach:

Step 1.1. Set the initial approximation at the new time
Here J 5 L/(cp(Tm 2 Tw) is a nondimensional latent heatstep tn1l based on the solution at tn . Smooth the mesh
(Stefan number). The exact solution at any time t isby some iterative procedure. We used a vertex averaging

procedure. This shifts the nodes to the middle position
u 5 erf(x/2t1/2))/erf(L) 2 1, (14)relative to neighboring ones (see Fig. 3) and has a tendency

to make the elements equilateral.
where L is the solution of the equationStep 1.2. Update nodal temperatures by solving (7). The

crystal–melt interface temperature remains unchanged ac-
Ïf ? Lexp(L2) erf(L) 5 1/J. (15)cording to (5).

Step 2. Compute the residuals of Eq. (8).
The position of the interface is defined by

Step 3. Update nodal positions to minimize the residual
norm R. Process next time step (go to Step 1.1 of the

d(t) 5 2 L Ït. (16)algorithm), if R is small enough. In contrast to Step 1.1,
where interface nodes are not moved, all nodes are moved.

We solved this problem with our 2D approach using ther-Boundary nodes on Si , i 5 1, 2, ..., are constrained to move
mal insulation conditions for the side wall, which leads toalong the appropriate boundary of Si .
a 1D solution with no y-dependence. We used values of J

Step 4. Return to Step 2 for an additional Newton itera- between 0.25 to 20, different meshes in the x direction (10
tion, if R is not small enough. to 20 nodes) and time steps ranging from 0.01 to 0.1. The

number of iterations of IFEM at each time step was notIn this way we again satisfy (1) but by changing tempera-
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TABLE I

Position of the Interface in Comparison to Analytical Solution

Case J 5 0.25 Case J 5 0.125

Time Exact ExactNumer. Numer.

0.01 0.1991 0.1991 0.2387 0.2387
0.02 0.2816 0.2814 0.3377 0.3359
0.03 0.3449 0.3449 0.4136 0.4115
0.04 0.3983 0.3984 0.4776 0.4754

more than four for convergence of the node locations (max-
imum node movement during iteration less than 1024 and
residual R less 1026). The results of our comparison are
shown in Table I and Fig. 4. For the range of parameters
considered, the difference between numerical and analyti-
cal values of the front location did not exceed 0.8%. This
difference decreased with refinement of space and time
discretization. A more sensitive measure of the agreement
between the exact and numerical solution is shown in Fig.
4. Here we present a comparison of the exact heat flux at
the interface with the heat flux obtained through numerical
differentiation of the computed temperature field.

5. A PRACTICAL EXAMPLE

Here we present a computation using data from a direc-
tional solidification experiment with cadmium zinc tellu-
ride [31]. A melt and crystal are in contact and contained
in an tapered ampoule (shown in Fig. 5). The crystal–melt
interface is initially stationary and coexists with an initially
stationary temperature profile also depicted in Fig. 5. The
thermophysical properties for a cadmium zinc telluride

FIG. 5. The ampoule geometry showing the typical mesh for each
subdomain and locations of the thermocouples B, C, D, E, F, and G.

crystal–melt system are listed in Table II. The ampoule
properties were taken to be those of silica glass. The zinc
is dilute in the case under investigation and the properties
of the phase diagram enable us to assume a constant melt-
ing temperature. For t . 0, directional solidification of
the crystal takes place as the boundary temperatures are
changed systematically to advance the melting isotherm,
TM , toward the initially ‘‘hot-end’’ of the ampoule. The
temporal and spatial boundary temperature profiles (see
Fig. 6) used in the calculation were obtained from experi-
mental measurements [31]. These measurements were in-FIG. 4. Comparision of analytical and numerical values of dimen-

sionless heat flux (­T/­x)J21 versus time, case J 5 0.125. terpolated to obtain a set of values used for Tex in (3) at
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TABLE II
Dm,c

­c
­n

5 0, (16)
Properties of ZnCdTe Used in Computations

Property Value Units at the ampoule walls and conservation of mass at the inter-
face is guaranteed byThermal conductivity (melt) 0.018 W ? cm21 ? K21

Thermal conductivity (crystal) 0.009 W ? cm21 ? K21

Thermal conductivity (ampoule) 0.29 W ? cm21 ? K21
2Dmn ? = cm 1 Dcn ? = cc 5 V ? n (cm 2 cc), (17)

Density (crystal and melt) 6.2 g ? cm23

Latent heat L 210 J ? g21

at the crystal–melt interface and cm , cc , Dm , Dc are theHeat capacity (crystal and melt) 0.29 J ? g21 ? K21

melt, crystal species concentration, and the melt crystal
species diffusivities, respectively. V and n are, respectively,
the node velocity and the unit normal vector at the crystal–

all points on the ampoule boundary. Figure 7 shows the melt interface. For a two-component solid solution, the
computed position and shape of the interface at equally equilibrium phase diagram yields the relation
spaced time intervals. Initially the interface was flat. Solidi-
fication then takes place rapidly and the interface develops cc 5 k(cm)cm (18)
a deeply curved profile. At later times the solidification
velocity decreases and the interface gradually flattens al-

which, for this paper, we assume holds away from equilib-though it retains a weakly curved shape. Table III gives
rium and is used together with (17) to complete the formu-typical performance characteristics of the IFEM method
lation. The initial value of species concentration in thefor this problem.
whole region is c(x, t0) 5 c0(x), where x 5 (x, y) or (r, z)
in 2D-Cartesian and cylindrical coordinate systems, respec-6. SOLIDIFICATION OF A BINARY ALLOY
tively. Recall (from Fig. 2) that solidification takes place
along the z-coordinate.In this section we consider the directional solidification

The interface front velocity is determined from the solu-of a binary alloy and account for species diffusion in both
tion of the thermal problem. The only coupling betweenthe melt and crystal during solidification. Species transport
thermal and mass transfer occurs through the dependenceby diffusion is governed by the diffusion equation
of the melting temperature on species concentration.

A finite-element approach has been used for the solution­c
­t

5 =(D = c), (15) of the problem. The concentration field is approximated by

which is satisfied in each phase. Species diffusion through
c 5 ONc

i51
ci Fi(x) ; ci Fi(x), (19)the ampoule wall is proscribed, i.e.,

where ci(t) are the nodal values of concentration and other
terms are the same as in (6). As in the previous problem,
a Galerkin formulation is used to find the unknown ci. The
Galerkin equations for (15) are

E
G
S­c

­t
Fi 2 V ? =c Fi 1 D=c ? =FiD dG

(20)

2 E
Si

D
­c
­n

Fi dS 5 0,

where the second surface integral carried out on the phase
interface Sm only and vanishes at the ampoule boundary
due to (16). An additional convective term containing the
product of V and the concentration gradient appears due
to the mesh advection.

Using (19) yields the following system to be solved forFIG. 6. Temperature versus time for thermocouples B, C, D, E, F,
and G of Fig. 5. the unknown ci
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FIG. 7. Interface location and shape at different times.

interface asymptotically moves to the steady position atE
G
S­c j

­t
F j Fi 2 V ? c j =F j Fi 1 Dc j =F j ? =FiD dG

(21)
the midplane of the domain with time, the evolution of
the temperature field and the position of the interface
and species concentration was computed according to the2 E

Si

D
­c
­n

Fi dS 5 0.
algorithms described in this and the previous sections. Se-
lected examples are discussed below.

For k 5 1 the solution obtained by our IFEM method isTime discretization is again provided by finite differences:
compared with the FEM solution for the diffusion problem.
Figure 8 shows profiles of the concentration at different­c

­t
5 (c(x, t 1 t) 2 c(x, t))/t. (22) times. The initial step in species concentration, c0c 5 0.5

at the left side of the interface and c0m 5 1 at the right
one at time t 5 0 decays with a time. The instantaneousThe interface Sm between the melt and crystal is character-
location of the moving interface is marked by the symbolized by the difference in species diffusivities Dc , Dm in
‘‘*.’’ When k 5 1, as it is here, there is no dependence ofspecies concentration between the crystal and the melt.
concentration on the velocity of the interface. The solutionTo describe this we use two unknowns, cc and cm , for each
must be the same as in a stationary domain. The solutionof the interface nodes. The two corresponding equations
in the same domain was also obtained by regular FEM onat these nodes are then (18) and (21) with the boundary
a static mesh (circles) and is provided for comparison inintegral computed according to (17).
Fig. 8. The discrepancy was small enough (less than 0.1Numerical experiments for mass diffusion have been
to 1%). One can see that relation (17) holds exactly forundertaken for few cases for different values of k in (18),
both methods.including regular diffusion through a moving interface,

Results for the last two cases (k , 1 and k . 1) arewhen k 5 1, as well as k , 1 and k . 1. All other coefficients
are set to unity.

In all these cases, the initial position of the interface was
at Z 5 L/4 where L 5 20. The initial temperature field
changed linearly from T 5 21 at the cold end to T 5 0
(melting temperature) at the interface and then to T 5 1,
the boundary condition at the hot end. The nondimen-
sional thermal conductivity throughout the domain is l 5
1, and the diffusivities are Dm , Dc 5 1. As the melt–crystal

TABLE III

Algorithm Performance for the Example Given in Fig. 5

Computer SGI Indigo 50 Mhz

Number of nodes/elements 570/1036
Solver Direct, Frontal [34]
Number of Newton iterations 3–5

(to reach a relative accuracy of 1025)
Number of mesh smoothing iterations 5
Time step value 100 to 104 s

FIG. 8. Evolution of concentration profiles from an initial step forTotal CPU time per time step 4–7 s
k 5 1.
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FIG. 9. Evolution of concentration profiles from initial step for
k 5 0.5.

presented in Figs. 9–11. The triangles in Fig. 10 represent
FIG. 11. Evolution of the concentration profile for solidification ofthe comparison with a simplified 1D model, which was an initially uniform melt (c 5 1.0) and initially uniform crystal (c 5 0.5),

presented in [32] for the case when diffusion in the crystal k 5 2.
is neglected. From the computed profiles one can see that
relation (17) holds exactly, and the concentration jumps
at the interface by an amount given by the distribution

Figure 12 shows the convergence history for an axisym-coefficient k, and is otherwise smooth in the crystal and
metric temperature field and mesh starting with the initialin the melt, even though the mesh is rather coarse.
guess shown in Fig. 12a. Here the initial guess has anFigure 11 presents the case for k 5 2, when the initial
interface which is tilted down toward the centerline. Theconcentration field did not satisfy (17). The evolution of
dimensionless temperatures are 1 and 21 at the top andthe concentration profile demonstrates how this initial con-
bottom, and the ampoule wall is adiabatic. The final posi-dition influences the evolution of the concentration field.
tion of the interface should be at z 5 0.5 (Tm(r, 0.5) 5 0)Condition (17) is enforced at the first step by the algorithm
and the solution converges to this in a few iterations, seedescribed above.
Fig. 12b. Figure 13 shows the same problem but for two
different initial guesses. The final state should be a simple
temperature profile (linear in z). In Fig. 13a the first guess
converges rapidly to the correct solution in three iterations.
The temperature gradients in the vicinity of the zero iso-
therm near the walls (Fig. 13b) are vanishingly small and
the first guess leads to a (locally) vanishingly small Jacobian
(see Eq. (11)). The mesh degenerates and the solution
diverges. For the examples presented in Figs. 12–13 no
vertex averaging (smoothing) or temperature field updat-
ing (step 1.2, Section 3.) was carried out. Figure 14 shows
the combined effects of these two procedures on the exam-
ple discussed in Section 5 (the geometry has been com-
pressed in the z-direction to highlight the differences in
the meshes). With smoothing and temperature updating,
the solution is obtained readily (Fig. 14a). In contrast, Fig.
14b shows that the mesh size varies abruptly and that
elements are concentrated in the vicinity of the interface.FIG. 10. Evolution of the radially averaged solidification velocity and
Note especially the coarse, highly stretched elements inconcentration at the interface versus interface location, k 5 0.5; triangles

present results by using approach [32]. the solid. In this case the solution diverges rapidly.
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FIG. 12. Convergence history for an axisymmetric temperature field and mesh starting with the initial guess (a) to the exact solution (b).

7. CONCLUSIONS APPENDIX: IFEM FORMULAE FOR 2D AND
AXISYMMETRIC CASES WITH LINEAR

This work confirms the suitability of the modified IFEM TRIANGULAR ELEMENTS
approach as an attractive alternative to other existing
methods for treating moving boundary problems. The solu- The main step in the algorithm is a Newton iteration

that updates the node positions to reduce the residual oftion algorithms described here represent a significant modi-
fication to previous IFEM methods in that it allows for equation (8) at each time step. That is,
time-dependent and nonmonotonic thermal boundary con-
ditions and two-component systems with liquid and solid

Ri 5 E
G
Srcp S­u

­t
2 V =uD2 =(l=u) 2 QDFi dG 5 0.state diffusion. The method can handle large distortions

of the interface and can also be used for systems with (A.1)
internal heat sources provided that these do not lead to
local temperature extrema. The algorithm and related soft- The integral (A.1) is computed by a summation of the

integrals over each element of the mesh, i.e., Ri 5ware is being used to assist in the postflight analysis of
the experimental data from cadmium zinc telluride crystal oNe

l Ri
e , where Ne is the total number of elements. For

triangular elements the integral is readily computed usinggrown under low gravity conditions on the first and second
U.S. Microgravity Laboratory (USML-1,2) [33]. local area coordinates L1 , L2 , L3, since local functions

FIG. 13. Convergence for an axisymmetric temperature field and mesh starting with a poor initial guess; (a) convergence after 5 iterations; (b)
divergence in 3 iterations.
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FIG. 14. Effect of smoothing and temperature updating: (a) typical mesh for transient problem from Fig. 5 for presented method; (b) mesh for
original IFEM [25j before it fails (ends of ampoule are not shown and geometry is compressed in z-direction).

and their derivatives are expressed explicitly through local Since dG 5 2 f r dr dz for the (r, z) coordinate system,
the multiplier r is present for the axisymmetric case. Forcoordinates. Then after integrating (A.1) by parts we have
the 2D Cartesian coordinate system, r is set equal to 1. A
constant multiplier is omitted in all the terms. We assume

Ri
e 5 E

Ge
Frcp S­u

­t
Fi 2 V =u FiD1 l=u=Fi

(A.2)
for the simplicity, that only the z or x-coordinate is allowed
to move.

In a local triangular coordinate system the following
2 QFiGr D dL1 dL2 dL3 2 E1

0
l

­u
­n

Fi Serds, relationships are used for the transformation between local
triangle area coordinates L1 , L2 , L3 and the global
Cartesian coordinates (x, y):where r is the radius for cylindrical coordinates or r 5 1

for Cartesian coordinates, D is the Jacobian of transforma- Li 5 (Ai 1 Bi x 1 Ciy)/2D
tion to local triangular coordinates and Se is the length of

andan element side. Se , is given by
x 5 L1 x1 1 L2 x2 1 L3 x3 ,

(A.4)Se 5 Ï(x1 2 xk)2 1 (y1 2 yk)2

y 5 L1 y1 1 L2 y2 1 L3 y3 .

where (xj , yj) are the coordinates of a triangle with side Here (xi , yi), i 5 1, 2, 3 are triangular vertex coordinates,
Se on the boundary S2 .

D 5 0.5 (y1(x2 2 x3) 1 y2 (x3 2 x1) 1 y3(x1 2 x2) (A.5)The expression for the Jacobian of the residual on a
triangle element with respect to the triangle coordinates is a triangle area, and
xj is

A1 5 x2 y3 2 x3 y2 ,

A2 5 x3 y1 2 x1 y3 ,­Ri
e

­xj
5 E

Ge
Srcp S­u

­t
Fi 2 V=u FiD1 l=u=Fi 2 Q FiD ­D

­xj A3 5 x1 y2 2 x2 y1 ,

B1 5 y2 2 y3 ,
1 S2rCpSV ?

­

­xj
=u 1

­V
­Xj

? =uDFi 1 l=u
­

­xj
= Fi

(A.3)
B2 5 y3 2 y1 ,

B3 5 y1 2 y2 ,
1 l

­

­xj
=u ? =Fi 1

­Q
­xj

FiD D rdL1dL2dL3 C1 5 x3 2 x2 ,

C2 5 x1 2 x3 ,
2 E1

0
S ­

­xj
Sl

­u
­nDSe 1 l

­u
­n

­Se

­xj
DFi r ds.

C3 5 x2 2 x1 .
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For a linear triangular element the basis functions It is also important to note that:
Fi(x, y) are local area coordinates Li(x, y), so

(a) Anticlockwise triangle vertex numbering is strongly
recommended. This ensures positive values of triangular

u 5 ukLk(x, y), =u 5 uk = Lk . (A.7) areas and the correct signs of the Jacobian.

(b) For all the terms in the boundary integrals (A.2),The expressions for the terms under the integral over
(A.3), (A.10), (A.11) accurate Gauss integration is re-each element are
quired to obtain stable quadratic convergence.

(c) A smoothed Newton technique is sometimes needed­D

­xj
5

1
2

Bj , when the initial guess for the temperature and interface
position are poor. This will accelerate convergence. The
smoothing is implemented via=Fi 5 =Li 5

1
2D

(Bi , Ci),

xn11
i 5 xn

i a ? S­Ri

­xj
D21

R j(xn), (A.12)­

­xj
=Fi 5

1
4D
S2

BiBj

D
, 2

Ci Bj

D
1 CijD, (A.8)

where 0 , a , 1.0. Typically, we use the value of a 5 0.5.

where Cij 5
­Ci

­xj
5 1

0 21 1

1 0 21

21 1 0
2,
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